PROOF THEORY OF WEAK COMPACTNESS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependent Choices and Weak Compactness

We work in set-theory without the Axiom of Choice ZF. We prove that the principle of Dependent Choices (DC) implies that the closed unit ball of a uniformly convex Banach space is weakly compact, and in particular, that the closed unit ball of a Hilbert space is weakly compact. These statements are not provable in ZF, and the latter statement does not imply DC. Furthermore, DC does not imply th...

متن کامل

A Weak Grothendieck Compactness Principle

The Grothendieck compactness principle states that every norm compact subset of a Banach space is contained in the closed convex hull of a norm null sequence. In this article, an analogue of the Grothendieck compactness principle is considered when the norm topology of a Banach space is replaced by its weak topology. It is shown that every weakly compact subset of a Banach space is contained in...

متن کامل

Smoothness and Weak* Sequential Compactness

If a Banach space E has an equivalent smooth norm, then every bounded sequence in E* has a weak* converging subsequence. Generalizations of this result are obtained.

متن کامل

On the Strength of Weak Compactness

We study the logical and computational strength of weak compactness in the separable Hilbert space `2. Let weak-BW be the statement the every bounded sequence in `2 has a weak cluster point. It is known that weak-BW is equivalent to ACA0 over RCA0 and thus that it is equivalent to (nested uses of) the usual Bolzano-Weierstraß principle BW. We show that weak-BW is instance-wise equivalent to Π2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Logic

سال: 2013

ISSN: 0219-0613,1793-6691

DOI: 10.1142/s0219061313500037